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Macroscale interfacial constitutive equations, as well as expressions for the
phenomenological functions appearing therein, are derived via a rigorous matched
asymptotic expansion scheme for transport processes occurring in immiscible
fluid-fluid systems possessing moving and deforming interfaces. The usefulness of an
asymptotic approach is demonstrated by examining a model in which the three-
dimensional microscale fluid continuum is assumed to obey an incompressible,
transversely-isotropic, linear, newtonian-type constitutive equation possessing
position-dependent phenomenological coefficients which depend strongly upon
distance normal to the interface. In such circumstances, the macroscale interfacial
stress tensor reduces to the familiar isotropic Boussinesq—Scriven form. Similarly, a
two-dimensional, isotropic, macroscale interfacial Fick’s law relation is derived from
a comparable, three-dimensional, transversely-isotropic, microscale fickian form for
the case of a diffusion-controlled surfactant transport exchange between the bulk

¥y

2 phases and the interface.

57

2 25| 1. Introduction

25} 5 In part I (previous paper) two distinct approaches, namely macroscale and
O microscale, were discussed in the context of modelling the physicochemical properties
=uw of interfaces between immiscible bulk fluids.
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210 Q. M. Mavrovouniotis and others

Upon adopting a macroscale view, the interface is envisioned as a singular two-
dimensional surface endowed with distinct interfacial areal (and lineal) material
properties, playing roles analogous to comparable volumetric material properties
encountered with conventional three-dimensional bulk fluids. Constitutive equations
for such a two-dimensional interface have generally been constructed by analogy
with their three-dimensional fluid counterparts. For example, Scriven (1960),
building upon earlier work by Boussinesq (1913), developed newtonian-like
constitutive equations for the interfacial stress tensor by appropriately modifying for
two-dimensional, riemannian surfaces the usual three-dimensional, euclidean, new-
tonian fluid equations for bulk fluids. Moeckel (1975) and Lindsay & Straughan
(1979) examined interfacial constitutive equations by similarly extending continuum
thermodynamic theory. Subsequently, constitutive equations for a simple surface
material (Slattery & Ramamohan 1984) and a transversely isotropic viscoelastic
interface (Waxman 1984) were invoked by analogy with their three-dimensional fluid
counterparts.

With the more detailed microscale approach adopted in this series of papers, the
three-dimensional structure of the interfacial transition region is explicitly
recognized. In Part I, a rigorous, matched-asymptotic, small-parameter expansion
scheme provided a method for systematically and rationally developing macroscale
conservation equations for the singular, two-dimensional macroscale interface from
the more exact, continuous microscale equations underlying these macroscale
relations. In that theory generic surface-excess areal density fields 45 and linear flux
density fields ¢°, respectively derivable from the microscale forms of the comparable
volumetric continuum density field 4 and areal flux-density field ¢ within the
interfacial transition region, were assigned to the two-dimensional macroscale
interface.

To proceed from the ‘exact’ microscale description of the pertinent transport
phenomena to a formulation of the macroscale interfacial constitutive equations, the
respective constitutive forms adopted by the microscale continuum density fields
within the interfacial transition region must be hypothesized. One important
difference between the interfacial region and the contiguous bulk-fluid regions, and
one which must be incorporated into any rational interfacial model, is the strong
local inhomogeneity in material-property and/or microscale field densities existing
within the transition region (in a direction normal to the interface) created by the
existence of short-range intermolecular and physicochemical forces; that is, steep
gradients exist perpendicular to the interface. Two distinct theoretical approaches
— statistical-mechanical and continuum-mechanical — have previously been used to
model the interfacial transition region. In both types, the inhomogeneities are
generally incorporated by assuming that, within the interfacial transition region, all
microscale continuum fields are locally transversely isotropic with respect to the
direction normal to the dividing surface (Eliassen 1963; Kirkwood & Buff 1949;
Goodrich 1981), and that the variation in microscale material properties and/or
microscale field densities normal to the interface are strongly inhomogeneous. Far
from the interface, the microscale fields are assumed to become locally isotropic, with
all properties and densities appearing in these field descriptions only varying slowly,
if at all.

Equilibrium statistical-mechanical methods (Kirkwood & Buff 1949; Irving &
Kirkwood 1950; Buff 1955; Hill 1959 ; Defay et al. 1966 ; Rowlinson & Widom 1982)
have frequently been used to investigate the diffuse interfacial transition region in
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A miacromechanical investigation of interfacial transport processes. 11 211

equilibrium systems. In many of these schemes, an anisotropic microscale pressure
tensor possessing both normal and tangential components is postulated to exist
within the interfacial transition region. This stress tensor is then determined from the
singlet and pair molecular distribution functions. Far from this interfacial region, the
hydrostatic microscale pressure tensor is assumed to possess its standard isotropic
form, characterized simply by a single scalar pressure field. Using such microscale
models, the macroscale constitutive equation for the surface pressure tensor is shown
(Buff 1955) to be characterized by a scalar interfacial tension, itself a surface-excess
quantity, in particular a surface-excess pressure.

Gradient theory (van der Waals & Kohnstamm 1908; Lovett ef al. 1972; Evans
1979; Davis & Scriven 1982 ; Gurtin & Matano 1988) has also been used to model the
interfacial transition region. In this scheme, the equilibrium properties of the
interface are assumed to be expressible solely in terms of the microscale fluid mass
density and its normal gradients proximate to the interfacial region.

In recent years, statistical-mechanical approaches have been used to derive the
equations of motion for non-equilibrium dynamical interfacial systems (Ronis ¢ al.
1978; Ronis & Oppenheim 1983; Davis 1987 ; Gurtin 1989).

Macroscale constitutive equations for the momentum transport processes
accompanying moving and deforming interfaces have been developed from a
continuum-mechanical viewpoint (Eliassen 1963; Slattery 1967a, b; Goodrich 1981)
by supposing the pertinent microscale fields within the interfacial transition region
to be transversely isotropic with respect to the direction normal to the dividing
surface, while still retaining the basic linear (albeit anisotropic) constitutive forms
analogous to those of three-dimensional bulk fluids (appropriately generalized for
non-euclidean spatial domains). In particular, the stress tensor is assumed to possess
a transversely isotropic newtonian form.

The micromechanical scheme proposed by Brenner (1979) for equilibrium systems
provides a physically based approach to physicochemical modelling of the interfacial
transition region and, hence, to ultimately establishing the macroscale constitutive
equations governing surface-excess densities and fluxes. In this model, the microscale
pressure tensor is assumed to be isotropic. However, within the interfacial transition
region, the large pressure gradients existing in equilibrium systems are assumed to
be balanced by short-range ‘external’ forces of an intermolecular origin (resulting
from large physicochemical field normal-component gradients, such as molecular
number density for single-component vapour-liquid systems, or species number
density in the case of adsorbed surfactants), jointly with any other longer-ranged
external forces that may be acting on the system. Interfacial tension thus appears as
the macroscopic manifestation of short-range intermolecular forces arising from
physicochemical inhomogeneities existing within the interfacial transition region.
This isotropic view of the equilibrium pressure tensor stands in marked contrast to
the more conventional statistical-mechanical view (Kirkwood & Buff 1949), in which
the intermolecular forces are implicitly incorporated into an anisotropic equilibrium
pressure tensor. Fundamentally, however, both views arrive at physically in-
distinguishable macroscale results. (Brenner (1979) compares the two theories in
depth.)

The effect of surfactants on the transport properties of interfaces was examined by
Deemer & Slattery (1978) through the use of models in which surfactant molecules
were considered to be adsorbed, three-dimensional solid particles dispersed
throughout the interfacial transition region. They calculated the interfacial tension

Phil. Trans. R. Soc. Lond. A (1993)
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212 G. M. Mavrovouniotis and others

and the surface-excess shear viscosity arising in a simple shear field for two specific
structural models: one a dilute suspension of neutrally buoyant spheres straddling a
relatively flat two-dimensional dividing surface (with the sphere centres restricted to
this surface), and the other a dilute suspension of chains of non-interacting, neutrally
buoyant spheres, with the sphere at one end of the chain straddling the dividing
surface, and with the centres of the remaining spheres composing the chain lying
along a normal to the dividing surface.

Brenner & Leal (1977, 1978, 1982) examined the surface diffusion, convection and
mass transfer of adsorbed surfactants within and across a two-dimensional,
stationary, planar interface. Although they too modelled the surfactant solute
molecules as solid, albeit ‘bipolar’, spheres, the possibility of molecular diffusion of
the surfactant was admitted by the inclusion of brownian motion of these spheres.
In addition, short-range physicochemical adsorption forces resulting from the
inhomogeneous, physicochemically bipolar nature of the brownian sphere surface
itself provided a physical mechanism for accumulating the surface-active species at
the interface. Use of this model permitted expressions for the adsorption coefficient,
surface diffusivity, surface solute velocity and macroscale concentration jump across
the interface to be obtained.

In this paper, the asymptotic scheme developed in Part I will be used rationally to
derive macroscale interfacial constitutive equations (together with the interfacial
phenomenological coefficients appearing therein) from knowledge of the comparable
microscale equations, in particular from the (strongly inhomogeneous) phenom-
enological material functions appearing in these microscale constitutive equations.
To illustrate the explicit procedure whereby two-dimensional macroscale interfacial
constitutive equations are determined from the corresponding three-dimensional
microscale constitutive forms (albeit possessing strongly inhomogeneous phenom-
enological coefficients), we will herein adopt the usual (Kirkwood & Buff 1949;
Eliassen 1963; Goodrich 1981; Brenner & Leal 1982) microscale model for the
interfacial region, in which all microscale continuum fields are supposed locally
transversely isotropic with respect to the direction normal to the macroscale
interface. Additionally, these fields are assumed to possess linear constitutive forms
analogous to those of their relatively homogeneous (and isotropic) bulk-phase
counterparts. Far from the interface, the microscale fields become locally isotropic.

The particular examples to be considered herein pertain to linear momentum and
material species transport. Contrary to the conclusions of Goodrich (1981b) for the
momentum transport example, the Boussinesq—Scriven interfacial stress tensor
(Boussinesq 1913; Scriven 1960) for a material newtonian interfacial fluid ‘phase’
will be shown to be applicable to systems in which the microscale stress tensor is
transversely isotropic. For the species transport example the surface-excess diffusion
flux will be found to obey a two-dimensional, isotropic, macroscale Fick’s law
constitutive relation, possessing a (scalar) surface diffusion coefficient whose general
form agrees with the comparable results of Brenner & Leal (1982) for a
‘discontinuous’ interface.

The microscale —~ macroscale linear constitutive examples provided in this paper
are to be regarded as purely illustrative of the general asymptotic scheme.
Alternative three-dimensional microscale constitutive model choices, e.g. non-
newtonian models, will of course, lead to other types of macroscale interfacial
constitutive behaviour, e.g. non-boussinesquian.

Throughout this paper, the notation and terminology of Part I will be used. When

Phil. Trans. R. Soc. Lond. A (1993)
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referring to equations given in Part I, the prefix I- will be inserted before citation of
that equation number.

2. Linear momentum transport

The interfacial conservation equation for the linear momentum density pv can
frequently be written in the form (I-7.7)

V(I PS)+Fs=n-[(v—u)pv—P], (2.1)
with the various symbols defined as in Part I. Equation (2.1) provides the jump
boundary condition relating the normal components of the macroscale flux of linear
momentum on either side of the interface. To apply this equation to any specific
physical system, macroscale constitutive equations for the surface-excess quantities
F5 and PS are needed. Such equations can be developed from the generic defining
relations (I-4.18) (with 4 = F) and (1-4.36) (with ¢ = P) once constitutive models
for the microscale quantities F and P are supplied. Note that, upon using the generic
definition (I-4.36) for a surface-excess flux density, the relation

Ps =/ P (2.2)
is found to hold.

(@) A constitutive law for the surface-excess pressure tensor

A macroscale constitutive equation for the surface-excess pressure tensor P* is
derived in the following section via use of (I-4.36) upon postulating an assumed form
for the microscale pressure tensor P. For this purpose, attention is restricted to an
incompressible, (locally) transversely isotropic fluid continuum satisfying the
microscale kinematical constraint (2.13) appropriate to a material interface. The
microscale pressure tensor is regarded as being both transversely isotropic and
linearly related to the rate of fluid deformation. In these model circumstances it will
be shown that the Boussinesq—Scriven interfacial stress tensor (Boussinesq 1913;
Scriven 1960) results. Thus, not only does the example illustrate our general
microscale asymptotic scheme for deriving macroscale interfacial constitutive
relations, but equally it provides a microscale rationale for the most common mode
of macroscale interfacial rheological behaviour postulated, as embodied in the
classical Boussinesq—Scriven constitutive model.

The three-dimensional microscale stress tensor possesses the usual decomposition

P=—pl+T, (2.3)

with p the equilibrium (thermodynamic) pressure and 7 the (symmetric) viscous or
deviatoric stress tensor. Following Brenner (1979), the microscale equilibrium
pressure term p is assumed to be everywhere isotropic. The microscale anisotropy
assumed to exist within the interfacial region is supposed fully attributable to short-
range intermolecular forces identified with the microscale external force density
vector F, rather than with the microscale pressure p.

Upon using (I-4.36), the surface-excess pressure tensor P® can be written as

Ps=ol +T5, (2.4)
wherein the scalar .
O-(xs) ~ GLJ [p(xs’o) _i)(xs?ﬁ)] dn (25)

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 1. A hypothetical microscale pressure profile is depicted within the interfacial transition
region (—! < n < 1) separating bulk-phase fluids 1 and 2. Negative values of the microscale pressure
scalar p within the interfacial region are required in order to satisfy the assumption of a positive
interfacial tension o according to the surface-excess formulation. Classical statistical-thermo-
dynamical theories of interfaces (see, for example, Rowlinson & Widom 1982) predict interfacial
tension from microscale data by employing formulas which assume (in addition to a normal stress
py) the existence of a tangential microscale stress p,. Statistical-thermodynamic models (see, for
example, the review of Ono & Kondo (1960)) have demonstrated that the scalar p, achieves large
negative values (as depicted above for p) within the interfacial transition region, owing to the
highly inhomogeneous nature of this region.

provides a surface-excess formulation of the equilibrium interfacial tension in terms
of the microscale pressure field p(x) (see figure 1); similarly, the expression

+ 00
T5(x,) ~ €L j I5-[T(xg, 71)— T(x,,0)] d7 (2.6)
fi=—00
formulates the surface-excess viscous stress tensor in terms of the microscale
deviatoric stress field 7(x).

Within the diffuse interfacial region, the existence of short-range, anisotropic,
intermolecular forces (attributable to the presence of steep mass density and/or
species concentration gradients in a direction normal to the macroscale interface) is
assumed to endow the microscale viscous stress tensor 7 with local axial symmetry
about the local direction of the normal vector *n. (Recall from Part I that the
asterisk pre-superscript is used to designate field variables at some point on a familial
coordinate surface *4 not coinciding with the parent surface, 4; the latter being
identified with the macroscale interface in the limit ¢ — 0.) In addition, 7 is supposed
linearly proportional to the rate-of-deformation tensor,

e =Y(Vv+Voh), (2.7)

by analogy with comparable three-dimensional bulk fluid hypotheses. Upon further
assuming the microscale fluid to be incompressible, namely

Vov=e:l=(e:*)+(e:*n*n) =0, (2.8)

the viscous stress tensor can thus be written in the transversely isotropic form
(Eliassen 1963 ; Goodrich 1981b)

T =n(e:*1) *,+2u(*l, - e *1 )+ 24 (¥, € *n*n+ *n*n- e *I) — 24" (€: *I,) *n*n, (2.9)

Phil. Trans. R. Soc. Lond. A (1993)
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with the microscale phenomenological viscosity functions %, u, ¢ and u” each
functions of x in general. (To obtain such a relation from the theory of anisotropic
fluids (Stokes 1984), the director inertia must be negligible.) Steep surfactant
concentration gradients existing in the interfacial region are postulated to impart a
strong functional dependence upon normal distance n to each of the four
phenomenological viscosity coefficients appearing in (2.9). Within the two bulk fluid
regions, the effect of the interfacial inhomogeneity upon the constitutive form of 7
is assumed negligible. In particular, the microscale fluid is supposed locally isotropic
within these regions; explicitly,

p=pg =" and 7=0. (2.10)

Thus, upon formally passing to the outer limit (I-3.11) in (2.9), we obtain T = 2pe,
which is the usual constitutive equation for an incompressible, isotropic newtonian
fluid.

Consistent with our assumption of a material fluid interface, the microscale
velocity vector v in the following analysis will be taken to be a ‘macroscale quantity’,
in the sense that

1\0v
(5)6_%= o(1) (2.11)

everywhere; i.e. O(1) changes in v are assumed to occur only over macroscale
distances. Such a supposition implies that v is continuous across the interface when
viewed from the macroscale, as shown by the following argument: Upon using
(I-3.30)—(1-3.34) (with *f'= v(xg,n) and f= v(x,,0)), the respective inner and outer
limits of v are identical, and are given by the relation

b(xg, M) = v(x,,0) = lim 7,(x,, 7) = lim T,(x, 7). (2.12)
n—->0+ n—>0—

Formally, our assumption of a material macroscale interface requires that the normal
components of the bulk-phase velocities be both continuous across the interface and
equivalent to the normal surface velocity n-u; thus

n- lim 7,(x,,7) = n- lim O,(x,,#) =nu=n"V, (2.13)
>0+ —0—
where V(x,) = v(xs, 0) (2.14)

is defined to be the material interfacial velocity. (Note that the material interfacial
velocity V is equivalent to the definition (I-6.19) obtained for phase interfaces.)
Owing to the assumed, relatively homogeneous, transverse physicochemical
properties of the interfacial region, macroscale discontinuities can arise only in the
normal component of the macroscale flux fields across the interface. Thus, transverse
or lateral gradients of the microscale velocity vector v within the interfacial region
are explicitly assumed to be macroscale in nature. This assures that no discontinuity
at @ = 0 can exist in the tangential components of the macroscale stress tensor; thus,

LNO o
(5)%( V,v) = 0(1). (2.15)

Phil. Trans. R. Soc. Lond. A (1993)
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Upon using (I-3.30)—(1-3.34) (with *f'= *V_v(x,,n) and f= V, V(x,)), we may then
write
(*V v) =V, V= lim (*V,v), =

lim
n—0+ n—->0—

m (*V,v), (2.16)

for the respective inner and outer limits of the tangential contribution to the
microscale velocity gradient. In contrast with the above condition of continuity, the
normal gradient of v may appear to be discontinuous across the interface in the
asymptotic, macroscale limit.

To establish the constitutive form adopted by the macroscale interfacial viscous
stress tensor 7° from the definition (2.6) together with the microscale constitutive
equation (2.9), inner and outer expansions of the various deformational terms
appearing in (2.9) must be calculated. Use of (2.16) together with the definition (2.7)
of e shows that the inner limit of e:*/ can be written in the form

(e:#1,) = [(Vo):¥1] = (*V,-0) = (V," V). (2.17)
Similarly, the outer limit of e:*/ is given by the relation
(e:*ly), = (*Viv), (a=1,2). (2.18)

Form the respective interfacial limits #— 0+ of the above equation, and use (2.16) to
obtain
lim (e:*/), = lim (e:*/), = (V4 V). (2.19)
>0+ n—>0—
The inner and outer limits of the term */ - e */  can similarly be reduced through use
of the product relations (I-3.15) and (I-3.16), jointly with the definition (2.7) of the
deformation dyadic e, and the limiting relation (2.16); this yields

(¥, € ¥1) = H(V. V) Ly 1y (Vo V)] = lim (7,76 77,), = lim (7€ ¥1,),. (2:20)

n—->0+ n—->0—

As shown later in this section, the term appearing in (2.9) involving the quantity
*I;-e-*n*n does not contribute to the macroscale constitutive equation for 7T%.
Rather than being detoured into a lengthy proof of this assertion at this point, we
will anticipate the result and assume that

TSn=0, (2.21)

postponing a formal proof until §25.

Given the limiting forms (2.17), (2.19) and (2.20), together with the assertion
(2.21), we are now in a position to calculate the constitutive form adopted by the
surface-excess viscous stress tensor 7°. This may be done by substituting the
microscale constitutive equation (2.9) for T into the integral formulation (2.6) of T*.
Thus, consider the integral arising when the first term appearing in (2.9) is
substituted into (2.6). Application of (2.17) and (2.19) to this integral yields

+00 — -
GLJ Is-{[n(e: 1) *1I] (x5, W) — [n(e : *1s) */s] (x,, 0)} dii = *(V- V) 5, (2.22)

fi=—o0

as the contribution of this term to the constitutive equation for 7%. Here, the
interfacial viscosity coefficient #° is given by the surface-excess relation

w~¢fm (7080 8) — (%4, 0)] 7. (2.23)

fi=—00

Phil. Trans. R. Soc. Lond. A (1993)
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Similarly, the integral arising when the second term of (2.9) is substituted into the
definition (2.6) can be written in the form

-+00 ————
eLf I-AL2p(*1, € 1)) (x,, ) — (T, € #13)] (x,, 0)} Al = 24D, (2.24)
fi=-—00
+00
wherein W~ eL [f(xg, 1) — (x4, 0)] A7, (2.25)
fi=—00
is an interfacial viscosity coefficient (explicitly, the interfacial shear viscosity
(Seriven 1960) for a newtonian interface; cf. (2.28)), and

is the interfacial rate-of-deformation tensor. Due to the constraint (2.21), none of the
other terms in (2.9) contribute to T5.
The above results combine to yield the purely macroscale expression

TS = g5 (V, V) I,+2u°D® (2.27)

as the operational form of the interfacial constitutive equation for 75, Substitution
of the above relation into (2.4) furnishes the interfacial constitutive equation for the
total stress tensor, namely

S = ol g+ 2u%(D° =4 1:D%)+ k3 [ D3, (2.28)
where 4° is the interfacial shear viscosity, and

def

kS = n*+u’ (2.29)

is the interfacial dilatational viscosity.

The macroscale expression (2.28) for the interfacial pressure tensor P® reproduces
identically the Boussinesq (1913) and Scriven (1960) interfacial stress tensor,
previously proposed on a purely phenomenological, continuum-mechanical basis by
analogy with conventional three-dimensional newtonian fluids (albeit modified to
reflect the generally non-euclidean nature of the curved, two-dimensional, interfacial
domain). Using our asymptotic approach, we have been able to furnish a rational
derivation of this macroscale interfacial equation from the corresponding microscale
constitutive form. Equation (2.28) has been obtained strictly only for material
interfaces, and then only for circumstances in which the three-dimensional microscale
fluid in proximity to the interfacial region possesses the linear, transversely-isotropic
form (2.9). An important condition upon the validity of (2.28) is contained in (2.21).
As demonstrated in subsequent paragraphs, this condition (indeed, as is clearly true
for the kinematical conditions (2.16)—(2.20)) is appropriate only in the asymptotic
limit as e—>0. We make this ¢—>0 remark explicit because other microscale —
macroscale interfacial theories (see, for example, Eliassen 1963) claim to be exact,
rather than asymptotic, whence the validity of the relation 75-n = 0 remains an open
question in their theories. In turn, the answer to this question impacts upon the
question of whether or not the interfacial stress tensor 7 (or P®) is symmetric, and
this is an important issue in connection with the moment-of-momentum equation for
interfaces, as discussed in Part 1.

In general, the microscale viscosity fields u(x) = u(x,,n) and 5(x) = 5(x,,n)
required in the respective evaluation of x°® and #® via (2.23) and (2.25) may possess
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a steep gradient in the neighbourhood of the interface when ‘adsorbed’ surfactants
are present; that is, since the three-dimensional, microscale mass density p,(x) of
the surfactant species A, say, varies steeply within the interfacial region (with
9p,/0n =0 in the neighbourhood of n =0), the same is supposed true of the
viscosities. This fact implicitly assumes a local functional dependence of both y and
5 upon p, (with both du/dp, and dy/dp, > 0), in the manner of, say, the analogue
of the Einstein equation (Einstein 1905, 1956; see also Adler et al. 1990) for the
viscosity of suspensions, with the surfactant molecules playing the role of suspended
particles in that theory. Thus, the monolayer coverage achieved by adsorbed
surfactants at the interface can be expected to yield very large three-dimensional
viscosities within the diffuse interfacial region proximate to n = 0 (such as depicted
in curve B of Part I, figure 5). The existence of such large microscale viscosities thus
accounts for the concomitant existence of sensible (Wasan et al. 1971; Jiang et al.
1983; Ting et al. 1985) interfacial viscosities x* and «®.

If the microscale pressure tensor P is everywhere locally isotropic, then y =y’ =
1" and 5 =0 in (2.9). In such circumstances, the interfacial shear and dilatational
viscosities appearing in (2.28) can be shown to be identical, namely #° = «*, and to
be given explicitly in terms of the prescribed microscale viscosity data pu(x,, n) as

-+00
1) = K8 ~ el | (i, ) — (s, 0)] dit. (2.30)
fi=—o0
This equality of interfacial viscosities may be viewed as providing indirect theoretical
confirmation of the experimentally observed fact (Ting et al. 1984) that measured
values of 4* and «® are of similar orders of magnitude at a gas—liquid interface.

(b) Validity of the symmetry condition T-n =10
In the preceding analysis, we asserted that the term */;-e-*n*n in (2.9) does not
contribute to the macroscale constitutive equation for 7% (owing to the restriction
(2.21)). This is demonstrated in the following to be a consequence of the microscale
linear momentum equation

p[%+(v—*u)~Vv]=F+V'P. (2.31)

(Note that it is convenient here to use the surface-fixed derivative /3¢ defined in
Part 1.)

Within the interfacial transition region, the tangential component of (2.31) can,
with the use of (2.3), be written in the form

i[*n.ﬂ-_{_p(v_*u). *ng_:;

Y %

+ [/}%—I—p(v— *u) - *Voo—*Vg: T] “*L(2.32)

Upon supposing that all terms appearing on the right-hand side of the above are
O(1), this equation furnishes the scaling

or ov
O BT 7 drr Y
noe I+ p(v—*u) nas /, = O(e). (2.33)
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Application of the order-of-magnitude relations (1-6.7) and (2.11) gives

0

Lk T ¥ = )

= (*nT+%1,) = 0() (234
as the appropriate scaling of the linear momentum equation within the interfacial
transition region. Since 7 is symmetric, the identity

*n-T-* = *[,-T *n (2.35)
is applicable. Upon using (I-3.30)—(1-3.34), the above two relations combine to yield
g y
O — e, -
[*/, T *n*n] = lim [*/,-T-*n*n], = lim [*/,- T - *n*n],. (2.36)
-0+ —>0—

Since the inner and outer limits in the latter are seen to be identical, the term
*[,- T+ *n*n will not contribute to the surface-excess stress tensor 7° upon inserting
the corresponding term appearing in (2.9) into (2.6). Hence, 7°-n = 0, as asserted in
(2.21). QED

(¢) Discussion

The macroscale jump boundary condition (2.1), together with the interfacial
constitutive equation (2.28) for P* and the assumed continuity of the tangential
component of the macroscale velocity across the interface, completely defines the
macroscale system in the absence of surface-excess external forces.

For a system that is at equilibrium, 7% = 0, whence (2.1) becomes

V.o+2Hon = n[p]. (2.37)

This vector expression can be separated into its normal and tangential components,
respectively yielding
[pl =2Ho, and V,o=0. (2.38a, b)

Equation (2.38a) is, of course, the familiar Laplace equation for an equilibrium
system (in the absence of surface-excess forces).

Although we have assumed that the microscale fluid obeys the incompressibility
relation V-v =0, the comparable quantity V -V for the macroscale interface is
generally non-zero. Thus, the dynamic interfacial tension, namely

=1 P5=c+kV, V, (2.39)

is generally not equivalent to the equilibrium interfacial tension o. This is
particularly important since, in contrast to the usual (compressible) three-
dimensional bulk fluid equations, in which « is often small (Bird et al. 1960, p. 79),
the value of the interfacial dilatational viscosity «® is often comparable to that of the
interfacial shear viscosity. Indeed, «* = 4° for an isotropic fluid (cf. (2.30)).

The usefulness of our asymptotic approach is demonstrated by comparing the
macroscale interfacial constitutive equations rigorously derived herein with the
constitutive equations obtained by Eliassen (1963) and Goodrich (19815) using
alternative microscale theories.

In contrast with the approach of Eliassen (1963), our asymptotic scheme provides
a rational method for identifying the sensible terms which appear in the interfacial
transport equations.

Goodrich (1981b) used a Taylor series approximation approach to obtain a
constitutive equation for 7% from the microscale form (2.9). However, his resulting
constitutive equation contained two additional terms, respectively multiplied by

O-dynamic
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”s

what in our terminology would be x#® and #”%. Our rigorous asymptotic approach
shows inter alia that the two extra terms and concomitant phenomenological
coefficients, which Goodrich (19815) claims must be added to the Boussinesq—Scriven
equation (2.28) for it to be complete, are not rationally derivable from a transversely-
isotropic microscale fluid model.

This discrepancy arises due to two main causes: (i) an oversight in Goodrich’s
Taylor series expansion given in his second equation on p. 351 leads him to write
(Vg PT) in place of [V, (/5 P")] in his equation (25); (ii) Goodrich failed to account for
the constraint (2.21). (Goodrich’s P! is equal to our P.)

Yet another apparent oversight arises in Goodrich’s reduction of the term
involving */,-e:*n*n. In particular, consider the integral

f v (%’7‘5) dit (2.40)

appearing in his equation (69). (Goodrich (1981b) has actually multiplied through by
(Vs +) and thus uses @ rather than v in his analysis. (He assumes the viscosity
coefficients are independent of x,.) In addition, his 4" is our x’.) Substitution of the
relation

v(xg, n) = V(xg)+70(e), (2.41)
which can be obtained from (I-3.33) given that (2.11) holds, into (2.38), followed by

subsequent integration yields the expression

Joe

’

)dﬁ = V[ E+0(e) f (%’;)ﬁdn (2.42)

1

//L/
on
Although the final term in this equation appears on cursory examination to be
negligible (i.e. of O(e)), it is actually of O(1); for, when p” attains large values, namely
of O(¢7'), within the interfacial transition region (as is necessary for the appearance

of measurable interfacial viscosities according to our theory), du’/07 will also be of
O(e™). Goodrich’s neglected this term in his analysis, inappropriately in our view.

3. Surface-active species transport

The interfacial conservation equation (1-7.17) for the areal mass density p§ of some
material species ¢ can be written as
8 i
ot

+(0—u) Vi pi+{Vy [v4(x,, 0) + mn-ul} p

+Vo Uy ) —Ri+n [(@—u)p,+ji] =0, (3.1)

with the various symbols appearing herein defined as in Part I. This equation
supplies the general ‘jump’ boundary condition relating the respective normal
components n-j,, (« = 1,2) of the macroscale species flux vector j,, on either side of
the non-material fluid interface. In obtaining the above expression, the tangential
component, vy, of the microscale velocity vector has been assumed to be a macroscale
quantity (see equation (I-6.14)). Adsorbed surface-active substances will exhibit
sensible values for p} since they generally possess a relatively large volumetric
number density within the interfacial transition region as compared with the bulk-
fluid regions.
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To apply (3.1) to any specific physical system, macroscale constitutive equations
for RS and j§ are needed. Such equations can be developed from the defining relations
(I-4.18) and (I-4.36) once microscale constitutive models for the comparable three-
dimensional quantities R, and j, are adopted. In addition, appropriate equilibrium
isotherms relating bulk and surface-excess surfactant densities at each interfacial
point x are required. (These concomitantly jointly provide the corresponding bulk-
phase partitioning relation, as in (3.16).)

In the following analysis a macroscale constitutive equation for j§ is derived for an
inert, non-reactive surfactant species A. The precursor microscale constitutive
equation for j, will be assumed to possess a transversely isotropic (cf. (3.4)) Fick’s
law form for the ordinary diffusion contribution. In addition, a short-range
conservative, microscale physicochemical ‘adsorption’ force is imagined to act upon
the surfactant in proximity to the interface, tending to attract the surfactant to the
interfacial region. Ultimately, we derive an isotropic, macroscale, interfacial Fick’s
law constitutive relation governing interfacial diffusion of the surfactant, together
with a microscale interpretation of the (scalar) surface diffusion coefficient D*®
appearing therein in terms of a quadrature of the normal-position-dependent
microscale diffusivities and microscale potential energy function (cf. (3.22)).

Our analysis will focus upon the case of diffusion-controlled surfactant transport.
Thus, local microscale equilibrium is assumed to exist in the vicinity of the interface,
leading eventually to the deduction of a linear, macroscale, equilibrium, adsorption
isotherm of the Henry’s-law type (cf. (3.14)), together with a microscale
interpretation of the Henry’s law coefficient K ,, (cf. (3.15)) appearing therein.

(a) Diffusion-controlled surfactant transport

Consider the transport of a non-reactive (R, = 0) surfactant species A whose
microscale transport is governed by the constitutive equations given in the following
three paragraphs.

The microscale constitutive equation for the ‘non-convective’ flux of A, namely
the flux relative to the mass-average velocity v, is assumed to be given by the
expression{

Ja=M Fp,—D-Vp, (3.2)

at all points x of the microfluid, including the interfacial transition region. In this
equation, the first term represents the ‘convective’ contribution to the flux arising
from the physicochemical adsorption force F, whereas the second term represents the
diffusive, Fick’s law contribution. The diffusion dyadic D appearing therein is
assumed to be related to the mobility dyadic M of the surfactant species through the
Stokes—Einstein relation

D = kTM, (3.3)

where k is the Boltzmann constant and 7' the absolute temperature.
Within the interfacial transition region, the existence of short-range, anisotropic,
intermolecular forces (attributable to the presence of steep mass density and/or

+ This equation results from a dilute solution approximation for the usual species mass flux constitutive
equation of a relatively constant density binary fluid mixture composed of respective solvent species and
surfactant species (A). In addition, the microscale equations of this section are similar to those developed by
Brenner & Leal (1982) using a micromechanical model, in which the surfactant molecules are considered to be
solid, brownian spheres of radii much larger than the ‘thickness’ I of the interfacial transition region.
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D,

Figure 2. Variation in the normal (D)) and tangential (D, ) microscale diffusivity coefficients with
respect to the normal distance »n from the parent coordinate surface. This qualitative sketch
displays the diffusivity minima expected to occur within the interfacial transition region, —! <
n < 1. Both diffusivity coefficients attain identical bulk-fluid values D, and D, at sufficiently large
distances, n > [ and n < —I, respectively, from the interface.

species concentration gradients in the direction normal to the macroscale interface)
is assumed to endow the microscale fluid with axial symmetry about the normal
vector *n. Thus, D is assumed to possess the transversely isotropic form

D(xg,n) = *I,D (x5, n) +*n*nD | (xg,n). (3.4)

In general, D, and D, which respectively represent the diffusivity coefficients in the
normal and tangential directions, are expected to attain (positive) minimum values
within the interfacial transition region due to the strong forces existing therein
(figure 2). Far from the interfacial region, in the bulk-phase regions where the
diffusion is assumed isotropic, both diffusivity components necessarily attain the
same values, namely

n|->o0 n|-00
~ (D, form >0,
where b= {172 for w < 0. (3.6)

Thus, far from the interface the microscale (and macroscale) diffusivity dyadic
attains the isotropic value B
D =D, (3.7)

wherein D, and D, are macroscale phenomenological functions.
The physicochemical adsorption force F acting upon the surfactant species A in
proximity to the interface is assumed to be conservative, and hence expressible as

F=—kTVE (3.8)

in terms of the dimensionless physicochemical potential energy function K(xg, n). The
main features of this force are that: (i) it is non-zero only in the interfacial transition
region n = O(¢) (and hence is ‘short-range’ compared with any of the more
conventional ‘long-range’ external forces, whose length scale is such that they are
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A

E,

Figure 3. Variation in the (dimensionless) adsorption potential £ with respect to the normal
distance n from the parent coordinate surface. This qualitative sketch displays the deep potential
well existing within the interfacial transition region, —! <n <1, as well as the possible energy
barriers on either side of this region.

sensible in the domain n = O(1)); (ii) it is an attractive force, tending to cause
surfactant molecules to accumulate in the vicinity of the macroscale interface, 7 =
0. Accordingly, £ necessarily possesses a deep potential well within the interfacial
transition region (figure 3). This well accounts for the strong adsorption of the
surfactant at the interface and, consequently, the existence of an experimentally
observable (i.e. non-vanishing) value for the surface-excess areal density p%. Far from
the interface, the adsorptive force vanishes. Thus, the potential energy function £
possesses the macroscale asymptotic form

_ {E_l form > 0,

=

E, form<0, 3:9)

where E, and K, are constants, independent of x, and =.

We will suppose in what follows that within the interfacial transition region, and
to terms of lowest-order in ¢, the microscale species mass fraction g, can be written
as the Boltzmann distribution (justification for which is provided later in this
section) .

ﬁA = C(xs) exp[-E(xs,ﬁ)], (310)

where the normalization coefficient C(x;) is independent of n. The above expression
is equivalent to assuming that the surfactant rapidly attains local thermodynamic
equilibrium in the normal direction. This circumstance corresponds to the case of
‘diffusion-controlled’ surfactant transport, wherein surfactant molecules overcome
energy barriers to adsorption at a rate that appreciably exceeds the rate of molecular
diffusion towards the interface. It will also be assumed in what follows that E
possesses a relatively weak dependence upon x, in comparison to C; explicitly, we
suppose that

CIV,E|/|IV,C| < 1. (3.11)

Use of the matching conditions (I-3.18), together with the outer limiting form (3.9)
for H, yields

_hm (pA)l(xS?ﬁ) = O(xs) eXP(_E1)> (312(1«)
lim (Pa)o(xs, W) = C(x;) exp (— B,). (3.120)
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(Here, the relations exp (a) = exp (@) and exp (@) = exp (@) have been used. Assuming
that the limits @ and @ exist, the validity of these relations can easily be proven. In
particular, define a; = In[1+alexp (@) *]. Then o, > 0 when a > 0. Now, if g exists,
then there must exist a positive function § > 0, say, such that |a(e) —d| < «, for all
0 < ¢ < 4. Thus, |exp[a(e)] —exp (@)] < « for all 0 < ¢ <, which proves the validity
of the first relation. This same proof holds for the second relation as well.) The surface-
excess surfactant species mass fraction p$ can now be determined. Substitution of the
limiting forms (3.10) and (3.12) into the generic definition (I-4.18) (with 4= p,)
yields
+ 00

) ~ ety | fexp [ Bl 1) —exp (- )} (3.13)
Comparison with (3.12) thereby provides the linear, Henry’s law, constitutive
adsorption isotherm

ﬁAa = Aapi (0‘ = 1>2)a (314)
def _ + 00 " _
in which K, = exp(—E’“)/eLJ [exp (—E&)—exp (—EK)]dR (3.15)

is the linear (equilibrium) adsorption coefficient based upon the a-phase. Fur-
thermore, upon division of (3.12a) by (3.12b), we obtain the bulk-phase linear
partition constitutive relation

Par(0+) = Kps,(0—), (3.16)

def

with K =exp(E,—E)) (3.17)

the bulk-phase partition coefficient.

The appropriate form of the interfacial constitutive equation for the surface-excess
mass flux j$ can be established via (I-4.36) from the preceding microscale model of
the surfactant system as follows. Substitute (3.8) into (3.2), thereby obtaining

Ja=—D (psVE+Vp,). (3.18)

Form the inner limit (I-3.7) of the above equation, and simplify the resulting
expression using the product identity (I-3.16), together with the Boltzmann relation
(3.10) and the inequality (3.11), to obtain

Jo=—D-(VO)exp (—E). (3.19)

Similarly, application of the outer limiting operations (I-3.11), subsequent
simplification of the resulting expressions using (I-3.15) and (3.12), and eventual
formation of the limits #— 0+ produces the relations

lim (j,), = —( lim 51>'(V0) exp (—£,), (3.200)
lim (), = —(}im 52)-(V0) exp (—E,). (3.200)

Substitute the limiting forms (3.19) and (3.20) into the integral microscale
formulation (I-4.36) (with ¢ = j,), and subsequently simplify the resulting expression
using the order-of-magnitude scaling relation (3.11). This yields the interfacial
fickian diffusion formula

Ja=—DVpi, (3.21)
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as the appropriate constitutive equation for the surface-excess diffusive mass flux
vector for the surfactant species A. In this equation, the scalar

J+w {Du(xs’ 7) exp [—E(xS) ﬁ’)] _E(xs’ O) exp ( _E—)} dn

D¥(x) = === J‘+oo (3.22)

- {exp[—E(x, )] —exp (—E)da
fi=—00
is the interfacial diffusion coefficient.
Substitute the constitutive relation (3 21) for j$ into the interfacial conservation
equation (3.1) to obtain

3 0%

ot + (v_u) ' Vs pf& + {Vs ' [US(XS,O) +nn: u]} Pfx

—V, (DV,p3) +n[(5—u) p,—DVp,] = 0. (3.23)

This expression supplies one of the two jump boundary conditions imposed upon the
bulk-species flux across the macroscale interface. All of the surface-excess quantities
appearing in (3.23) are now completely defined.

(b) Validity of the local equilibrium assumption
The microscale surfactant transport conservation equation (cf. the generic
equation (I-5.5)) may be expressed in terms of the surface-fixed coordinate system of
Part I as

5 .
gtA+< ) Vp,+(V-0) pp+V-j, = 0. (3.24)

Separation of the gradient operator into its normal and tangential components yields

1 apA o Ya
_— — % % *p
eL[(” u)tngm T (a )pA+ 3

d .
et 01wV pu+ (V, 00ps V| =0 329

Upon assuming that all terms appearing in the second bracket are of O(1), and
subsequently applying the scaling relations (I-6.7) for *u and *n, the above
expression becomes

S l(v— ) *np, ] = OG). (3.26)
Substitution of (3.4) and (3.18) into (3.26) thus yields the expression
D, (9 oK
2 (Lerri )+pA<v— u) *n = f(x,), (3.27)

valid within the interfacial transition region. Here, the scalar function f(x;), which
represents the lowest-order contribution to the normal mass flux of species A across
the interface, is independent of n. If A is the only species being transported across
the interface, this function will be given by the expression

f=plv—*u)-*n (3.28)
Phil. Trans. R. Soc. Lond. A (1993)
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within the interfacial region. (Recall that the mass conservation relation (I-6.9)
assures that f is independent of #n.) Examination of the lowest-order terms appearing
in (3.27) yields the expression

9pa OB\ _

valid within the interfacial region, n = O(e). Since, p, = g, +O(¢) in this ‘inner’
region, upon integration (3.29) confirms the Boltzmann form (3.10) for 5, used in
deriving the interfacial Fick’s law relation (3.21).

(¢) Discussion

The utility of a rational method (such as our asymptotic scheme) for deriving
macroscale interfacial constitutive relations from the underlying microscale
equations may be explicitly illustrated by examining alternate constitutive forms
suggested in the literature for the surface-excess mass flux j§. In particular, upon
applying macroscale ‘rational’ continuum-mechanical arguments to interfacial
systems, Slattery (1980, 1990) proposed the expression

Ji =~ "DV, 04 (3.30)

as a possible constitutive relation for the interfacial species mass flux. Equation
(3.30) is obviously inappropriate; for, if the density is invariant across the interfacial
region (and hence p® = 0), the constitutive equation (3.30) predicts that j$ = 0. In
contrast, the prediction of our theory is that

Ji = —pDV, 0 (3.31)

for a homogeneous density system. (Here, we have supposed o} to be defined by
(I-4.18) (with 4 = w,), despite the fact that w, = p,/p is not a volumetric density.)
A major factor in the breakdown of analogies between volumetric and surface-

excess densities, p, and pj, respectively, is that whereas the three-dimensional mass
def

fractions w; = p,;/p exist, the comparable mass fractions w§ = p/p° may not exist (cf.
(I-7.3)) and, even if they did, they would not be identical with the quantity «§ defined
above. The difficulty with Slattery’s (1980, 1990) approach to interfacial transport
processes via his pursuit of analogies with comparable three-dimensional transport
phenomena stems from his failure to clearly distinguish between surface and surface-
excess densities.

Our theory can easily be modified to include systems for which the length scales
characterizing changes in D and ¥ (in the normal direction) are distinctly different,
yet are still of microscale dimensions. In particular, define /;; and Iy to be the respective
characteristic normal distances over which variations in the surfactant diffusion
coefficient and potential energy function occur. For these distances satisfying the
inequality |n|/ly, > 1, the effect of the interface on D may thus be regarded as
negligible, whereas for distances |n|/l5 > 1 the adsorptive forces may be assumed to
vanish. Since both /;, and /; are each assumed to be of microscale dimensions, the
relations I, /1 < O(1) and I/l < O(1) will both hold. Thus, the bulk-fluid forms (3.7)
and (3.9), and consequently the resulting constitutive relation (3.21) and adsorption
isotherm (3.14) (together with the definitions (3.13), (3.22) and (3.15)), remain
applicable in the altered circumstances of this paragraph.

The quantitative choice of microscale parameter ! appearing in our asymptotic
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theory will depend upon the relative magnitudes of the two length scales I, and Iy,.
In particular, ! necessarily corresponds to the largest microscale dimension of the
system. Three separate order-of-magnitude relations between the two parameters
and Iy, are possible: (i) I/l = O(1); (ii) Ip/lx < O(1); and (iii) I, /I > O(1). Although
the results given here are applicable to all three situations, a further perturbation
expansion (Brenner & Leal 1982) about the additional small parameter can be used
to simplify the equations for cases (ii) and (iii).
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